Difference between revisions of "Price Indexes"

From Pricing Wiki
Jump to navigation Jump to search
(Created page with "<math> \operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}} </math>")
 
Line 1: Line 1:
 
<math>
 
<math>
 
   \operatorname{erfc}(x) =
 
   \operatorname{erfc}(x) =
   \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt =
+
   \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt =  
 
   \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}
 
   \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}
 
  </math>
 
  </math>

Revision as of 14:44, 9 August 2011

\( \operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}} \)