Difference between revisions of "Price Indexes"
Jump to navigation
Jump to search
(Created page with "<math> \operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}} </math>") |
|||
Line 1: | Line 1: | ||
<math> | <math> | ||
\operatorname{erfc}(x) = | \operatorname{erfc}(x) = | ||
− | \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = | + | \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = |
\frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}} | \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}} | ||
</math> | </math> |
Revision as of 14:44, 9 August 2011
\( \operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}} \)